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Regio- and Stereoselective Synthesis of (E)- and (Z)-Allylsulfones
from Aldehydes and Alkynes

*
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Several (E)- and (Z)-1-p-toluenesulfonyl(=tosyl)-2-alkenes, allylsulfones,
were regio- and stereoselectively prepared from aldehydes and alkynes, respec-
tively, in good yields by application of the results of our previous investiga-

tion on "syn-effect" and iodosulfonization.

Allylsulfones are useful synthetic intermediates because of the ability of the sulfonyl
group to generate an adjacent carbanion and to act as a leaving group in substitution and elimi-
nation reactions.l) We have been investigating the preparation and the reactions of allyl-
2) 3)

In the previous papers, we reported the regio- and stereoselective synthesis of (E)-

and the related vinylsulfones™ to extend the synthetic utility of such sulfones.

3a,b)

sulfones

and (Z)-vinylsulfones and their conversion to the corresponding allylsulfones under mild basic

conditions, and it was found that Q-substituted vinylsulfones and (Z)-vinylsulfones gave exclu-

3a,b) probably due to the steric congestion which

4)

precludes the possibility of a stabilizing syn interaction, "syn-effect"”,

position as being pointed out by Block et al.,4d) while (E)-vinylsulfones preferentially afford

sively the corresponding (E)-allylsulfones,
between the 0- and 6-

(Z)-allylsulfones as kinstically-controlled products. These facts prompted us to develop the
regio- and stereoselective synthesis of (E)-allylsulfones from aldehydes according to the follow-

ing scheme, since our previous method employing sulfonylmethylphosphonate afforded the mixture

3a)

of (E)- and (Z)-isomers. Ts in the scheme means tosyl (p—CH3C6H 4SOZ—) group.
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An attempt to prepare vinylsulfone (3) from aldehyde (1) and 2,2,2-trichloroethyl tosyl-
acetate (2) by the general Knoevenagel condensation5 resulted in the formation of unseparable
mixture of 3 and allylsulfone (4) as an oil (Method A in Table 1). The improved method B,3C)
via the formation of sulfide (7) followed by the oxidation with Oxone (2KHSO5 'KHSO4 'KZSO4)

in two phases (CH2C12/H20) using a phase transfer catalyst, afforded also the mixture of 3 as
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major product and 4 as minor one in better yield except the case of Run 11 than that by the

method A as shown in Table 1.

The mixture of 3 and 4 thus prepared was treated with 1,8-di-

azabicyclo[5.4.0]lundec-7-ene (DBU) in CHSCN at room temperature to convert to (E)-4 in the

similar manner described in the previous papers.3a’b’d)

The reductive deprotection of 2,2,2-tri-

chloroethyl ester (4) with Zn/aq. AcOH and the subsequent decarboxylation at high temperature
in DMSO afforded the expected (E)-allylsulfones (6a-f) in good yields as shown in Table 2.
On the other hand, the preparation of (Z)-allylsulfones (11) was achieved according to the

scheme illustrated on the next page starting from alkynes (7) through propargylsulfone deriva-
tives (10) followed by the hydrogenation catalyzed by Pd-BaSO 4 (Table 3). One carbon homolo-
gative Method B using chloromethyl p-tolyl sulfide was inferior to Method A via iodosulfonization

a
1o+ 2 - 3
(Method A)
(Method B)
b =:[RCH2$HCH(TS)C02CH2CC13] c
C6HSS
7
(a) piperidine in AcOH, 25 °C, see Table 1 (Method A).

equiv.), piperidine (0.1 equiv.), r.t., see Table 1
(c) Oxone (2 equiv.), Bu4NHSO4 (0.3 equiv.) in

solvent and Time t1.

(b) C

£

HSSH (1.1

(Method B) for

CH2C12/H20 (4/3), r.t., Time t2.
Table 1. The Knoevenagel Condensation of Aldehydes (1) with 2
Method A
. s s . . a)
N . piperidine . Yield of Ratio
Run la-f (equiv.) (equiv.) Time/d 3+ 4/% of 3/4
1 la, CHCH,CHO (1.2) 0.1 1 70 66/34
2 1b, CH;(CH,) ,CHO (1.1) 0. 4.5 78 47/53
3 1lc, CH,(CH,),CHO (1.1) 0. 7 63 39/61
3 2’8 b)
4 14, CH4(CH,), ,CHO (1.1) 0.1 60 53/47
5 le, C6H5(CH2)2CHO (1.1) 0. 4.5 88 46/54
6 1f, (CH;),CHCH,CHO (1.2) 0. 1 97 93/7
Method B
. . a)
la-e . . Yield of Ratio
Run (equiv.) solvent Time t1 Time t2 3+ 4/% of 3/4
7 1a (1.1) CH,CN overnight 7 4a 84S) 94/6
8 1b (1.2) CH;CN 6 h 44 96 85/15
9 1c (1.2) (CICH,), 2 g9} 10 @®) 75 100/0
10 14 (1.2) CH2C12 4 4d 7 d 86 98/2
11 le (1.2) CH,CN 6 h 4 4 82 81/19
a) Determined by 400 MHz 1H—NMR spectra. b) Solidified. c¢) 3a, Mp

82.5-83.0 °C (from i-PrOH).
e) In MeOH/H20 (2/1).

d) Refluxed with 0.3 equiv. of piperidine.
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Hb
H C02CH2CC13
a b c
3 + 4 — RO Ts — (5] — RN Ts
H Ha
4a-f ba-f
(a) DBU (2 equiv.) in CH3CN, r.t., 1 h, then HC1l/MeOH. (b) 2Zn (3 equiv.)
in 80% AcOH, r.t., Time t1. (c) AcOH (2 equiv.) in DMSO, 100°C, Time t2.
Table 2. Preparation of (E)-Allylsulfones (6) via 4
. a) . . J
Run R Ratio Ylelg)of t1/h t2/h Ylelg)of Ha-Hb
of 3/4 4a-f7' /% 6a-f~'/% of 6/Hz
1 CH, 66/34 4a, 78 3 2 6a, 82 15.3
2 CHz(CH,), 85/15 4b, 84 7 3.5 6b, 89 15.3
3 cHy(cH,), 100/0 4c, 86 6 9¢) e, 94 15.3
4 CHy(CH,), 53/47 ad, 969) 8 3 6a, 79°) 15.3
5 CHLCH, 81/19 4e, 93 4 4 6e, 87 15.3
6  (CH;),CH 93/7 4f, 98 overnight 5 6£, 85 15.6

a) Ratios of 3/4 of the starting materials used. b) All the products were oil

except 4d and 6d and gave the satisfactory spectral data. (Z)-Isomers of 4 and

6 were not detected by 400 MHz 1H—NMR spectra. c¢) Refluxed in xylene. d) 44,

Mp 33-34 °C (crude). e) 6d, Mp 48.7-49.0 °C (from i-~PrOH).

of 7 in some respects, namely yields, a stench of the sulfide and the necessity of precaution to
air and moisture for the Grignard reagent.
Though the mechanism for the conversion of 8 to 10 with triethylamine is still ambiguous,

the fact that 1-tosyl-1-alkyne (12, R=C6H5CH2) was isolated in low yield (29%) when 8h was

treated with DBU (1.1 equiv.) as a base in CH3CN at 0 °C for 10 min seems to suggest that it
proceeds through the reaction pathway A shown on the next page.
Now, both (E)- and (Z)-allylsulfones have come available. Not only are these compounds

useful as building blocks in organic synthesis, but also they will be helpful for the stereo-

chemical investigation including ours on the "syn—effect".3a’b’d)

a RCH /Ts

b
(Method A) RCHZCECH —_— C=C
’ 17 Dm e
f R\ /CH
L/

2Ts
RCECCHZTS — /C:C\
Ha Hb

10 11

c,d

(Method B) RCZCH — [RC=CCH,STol-p]

2
z 2

(a) p-TOlsozNa°4H20 (1.5 equiv.) and I, (1 equiv.) in AcOEt/HZO (2/1), r.t.,

24 h. (b) Et3N (5 equiv.) in CH3CN, see conditions in Table 3. (c) EtMgBr (1.2
equiv.) in ether, reflux, 3 h. (4d) p—TolSCHZCl (1.3 equiv.) in ether, reflux,
overnight. (e) Oxone (3 equiv.) in MeOH/H20 (2/1), r.t., 4 h. (f) H2/Pd—BaSO
(5 mol%) in MeOH, 25 °C, T h in Table 3.

4
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Table 3. Preparation of (Z)-Allylsufones (11) via 10

vield of Yield of vield of ’Ha-Hb
Run 7Za-i, R Method Ma)/% Conditions 10a—ia)/% T/h 11a—ia)/% of 11/Hz
1 7a, CHyCH, A 8a, 88 50 °C, 1d 10a, 95 3.0°) 11a, 89°) 10.7
2 7b, CHy(CH,), A 8b, 95 50 °C, 1d 10b, 94 0.5 11b, 91  10.7
3 " B 10b, 63 . " "
4 Ic, CHy(CH,), B 10c, 47 1.0 11e, 92 10.7
5 7d, CH,(CH,), A 8d, 92  50°C, 2.5d 104, 89 0.5 11d, 94  10.7
6 Ze, CHy(CH,); B 10e, 53 1.0 11e, 97  10.7
7 1f, CH (CH,), A 8£, 79 50 °c, 2d 10f, 92 4.0 11f, 94  10.7
8 7g, CH,(CH,)g B 10g, 62 2.0 11, 93 10.7
9 7h, C.HCH, A 8h, 75  r.t., 34  10h, 879) 1.0  11n, 93 9.6
10 75, CgH.(CH,), B 10i, 72%) 1.0 114, 96%) 10.7

a) All the products except 10h,i were oil and gave the satisfactory spectral
data. (E)-Isomers of 11 were not detected by 400 MHz 1H—NMR spectra. b) At
0 °C. c¢) Contaminated with a small amount of 10a. d) Mp 78-80 °C (from

i-PrOH). e) Mp 57-58 °C (from i-PrOH). £f) 1 mol% of Pd~BaSO4 was used.

H
H /
.cl T R-C H n
A RLvee S0 o NP v it
-Ha"* I/ (%) I/ Ts -1 R4
Hp ) H 12
R--C Ts base
7\ _ / atantdil
H G ‘C\HQ lbase
8
- B, R‘FC‘DE-C’TS - Recocft' base | g
-hg - Hoy Ty -1 HR ™ *n =
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